Under review
Dallakyan A. and Pourahmadi M. (2024+). An Alternative Graphical Lasso Algorithm for Precision Matrices. Available on the arxiv.
Dallakyan A. and Pourahmadi M. (2024+). Learning Bayesian Networks through Birkhoff Polytope: A Relaxation Method. Available on the arxiv. Python Code
Peer-reviewed
Dallakyan A. and Yang Ni (2025). Generalized Criterion for Identifiability of Additive Noise Models Using Majorization. Proceedings of The 28th International Conference on Artificial Intelligence and Statistics, Available on the arxiv.
Dallakyan A. (2024). On Learning Time Series Summary DAGs: A Frequency Domain Approach, Econometrics and Statistics, Available here. [Python Code: Available Soon]
Dallakyan, A. & Pourahmadi, M. (2023) Fused-Lasso Regularized Cholesky Factors of Large Nonstationary Covariance Matrices of Replicated Time Series, Journal of Computational and Graphical Statistics, Available here. R Script
Dallakyan, A., Kim, R., & Pourahmadi, M. (2022). Time series graphical lasso and sparse VAR estimation. Computational Statistics & Data Analysis, 176, 107557. Available here. R Package
Dallakyan, A. (2022). graphiclasso: Graphical lasso for learning sparse inverse-covariance matrices. The Stata Journal. Available here. Stata package
Dallakyan A. (2020). Nonparanormal Structural VAR for Non-Gaussian Data. Journal of Comp. Economics. Available here
Bakhtavoryan R., Capps O. , Salin V., and Dallakyan A. (2018) The Use of Time Series Analysis in Examining Food Safety Issues.Journal of Food Distribution Research.2(49) 57-80
Bakhtavoryan R., Dallakyan A., and M. Galstyan.(2016)Analysis of Factors Impacting Rural Women’s Labor Force Participation in Armenia.Collected Articles on the Problems of Sustained Social-Economic Development of Republic of Armenia.1 (23)309-322