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Abstract

The fields of time series and graphical models emerged and advanced separately.
Previous work on the structure learning of continuous and real-valued time series
utilizes the time domain, with a focus on either structural autoregressive models or
linear (non-)Gaussian Bayesian Networks. In contrast, we propose a novel frequency
domain approach to identify a topological ordering and learn the structure of mul-
tivariate time series. In particular, we define a class of complex-valued Structural
Causal Models (cSCM) at each frequency of the Fourier transform of the time se-
ries. Assuming that the time series is generated from the transfer function model, we
show that the topological ordering and the corresponding summary directed acyclic
graph can be uniquely identified from cSCM. The performance of our algorithm is
investigated using simulation experiments and real datasets. Code implementing the
proposed algorithm is available at Supplementary Materials.

Keywords: Directed Acyclic Graphs; Time Series Analysis; complex-valued SCM
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1 Introduction

Structure learning in time series is used in many applications such as machine learning

(Peters et al., 2017), economics (Bessler and Yang, 2003; Demiralp and Hoover, 2003),

climate research (Runge et al., 2019), and earth science (Runge et al., 2019). There are two

general approaches depending on the time-resolution of the data (Breitung and Swanson,

2002; Rajaguru and Abeysinghe, 2008; Hyvärinen et al., 2010). First, if the time-resolution

of the measurements is higher than the time scale of the causal influence, then the structure

can be learned from the autoregressive model with time-lagged variables. Conversely, if

the measurements have a lower time resolution than the causal influence, a model can be

used in which the causal influences are contemporaneous or instantaneous (White and Lu,

2010). For details on structure learning from undersampled time series, see Danks and Plis

(2013); Gong et al. (2015); Plis et al. (2015).

In multivariate time series literature, Structural vector autoregressive (SVAR) models

are powerful tools for learning the structure of time series. SVAR allows causal influences

to occur contemporaneously and with time lags. Swanson and Granger (1997); Demiralp

and Hoover (2003); Moneta and Spirtes (2006); Runge et al. (2019) exploit constraint-

based methods, such as PC (Peter-Clark) (Spirtes and Glymour, 1991) algorithm for the

SVAR estimation. Such methods rely on Gaussianity and/or faithfulness assumption (see

Section 2 for definitions). Hyvärinen et al. (2010); Moneta et al. (2013); Dallakyan (2020)

propose methods for non-Gaussian data. Entner and Hoyer (2010); Malinsky and Spirtes

(2018) exploit the FCI algorithm to allow for the unmeasured confounding effects. Chu and

Glymour (2008) introduced additive non-linear time series models (ANLTSM) with linear

contemporaneous effects for performing relaxed conditional independence tests. Peters

et al. (2013) generalize ANLTSM and allow for the non-linear contemporaneous effects in

their time series models with independent noise (TiMINo) approach. Recently, Pamfil et al.
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(2020) propose a fully continuous optimization approach for learning the structure of time

series by exploiting a novel characterization of acyclicity constraint introduced in Zheng

et al. (2018).

In this work, we depart squarely from the time domain and propose a novel approach

to learn structure of time series in the frequency domain. Exploring dependence in the

frequency domain is especially of interest in the analysis of EEG data, or brain signals

(for a recent overview, see Ombao and Pinto (2022)), as well as in the analysis of macro-

economic datasets, such as for identifying business cycles (Croux et al., 2001). In sharp

contrast to existing algorithms that learn DAG in the time domain, which by design are

unable to identify dependencies in the frequencies, our approach defines a complex-valued

SCM in each frequency and recovers the underlying DAG for each frequency. Our approach

consists of a two step procedure. In the first step, we recover a topological ordering in

each frequency and then use a penalized log likelihood to identify edges. We refer to our

procedure as FrequencyDomain structure learning (FreDom). Additionally, we extend our

approach to jointly estimate the frequencies under the assumption that the DAG structure

is shared across specified frequencies.

We illustrate our method with a small toy example consisting of three time series

generated according to Figure 1(a). As shown in Figure 1(b), the time domain algorithm

(VARLINGAM) recovers a complete Directed Acyclic Graph (DAG) but fails to capture

the different DAG structures present in frequencies 1/5 and 2/5. However, when we apply

FreDom to these frequencies, the correct DAGs are recovered (see Figure 1(c)). Figure

1(d) shows the estimation of three edges across all frequency points. For example, in the

top figure of Figure 1(d), 1 indicates that the algorithm estimated the edge Y1t → Y2t and

0 indicates the absence of the edge at the given frequency. As expected, this edge exists in

frequencies closer to 1/5 but is missing in other frequencies.

To the best of our knowledge, the only frequency domain approaches for learning the
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Figure 1: Comparison of the VARLiNGAM algorithm with FreDom in a toy example with

p = 3 variables and n = 300 observations. (a): True time series. (b): DAG estimated

by the VARLiNGAM algorithm. (c): DAG estimated by FreDom at frequencies 1/5 and

2/5, respectively. (d): Edge estimation by FreDom across all frequencies. For a given

frequency, 1 indicates that the particular edge has been estimated, while 0 indicates that

the edge is missing.

structure of time series are proposed in Shajarisales et al. (2015); Besserve et al. (2021) and

partial directed coherence metric in Baccala and Sameshima (2001); Baccala et al. (2013).

The former is limited only to cases when the number of series is equal to two, while the

latter heavily relies on VAR estimation. It is important to note that VAR mismodeling can

significantly affect this metric (Ombao and Pinto, 2022, Section 5.2).

Compared to the existing methods, another feature of FreDom is that it allows to

work with a complex-valued time series or sequence data. The latter is naturally used in

telecommunications, robotics, bioinformatics, image processing, radar, and speech recog-

nition (Peter and Scharf, 2010; Wolter and Yao, 2018a,b; Yang et al., 2020; Lee et al.,

2022).

Throughout the paper, we use the following notation: scalars are denoted by lowercase

letters, except when they indicate the length of time series or frequency. To distinguish a

(random) vector from a matrix, we highlight the former in bold. The dependence of vector
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or matrix from the time (frequency) index is represented by X(t) and B(t), respectively,

and the ith element of the vector X(t) is denoted by Xi(t). The conjugate, and the

conjugate transpose of the complex-valued matrix is denoted by B∗ and BH , respectively.

In addition, we place all appendices in Supplementary Materials.

2 Methods

We start by reviewing the existing literature on structure learning for iid data. The goal

of structure learning is to recover the underlying structure of variables Xi, i ∈ V , given

the samples from the distribution P. We let G(V,E) be a directed acyclic graph (DAG)

on E that describes the relationship between variables. Independence-based (also called

constraint-based) methods (Spirtes and Glymour, 1991; Pearl, 2009), score-based methods

(Heckerman et al., 1995; Chickering, 2002; Teyssier and Koller, 2005; Loh and Bühlmann,

2014), and functional-based methods (Shimizu et al., 2006; Peters et al., 2014; Zhang

et al., 2015; Chen et al., 2019) are three popular approaches to learning the structure of

the underlying DAG.

Independence-based methods, such as the inductive causation (IC) (Pearl, 2009) and

PC (Peter-Clark) (Spirtes and Glymour, 1991) algorithm, utilize conditional independence

tests to detect the existence of edges between each pair of variables. The method assumes

that the distribution is Markovian and faithful for the underlying DAG, where P is faithful

to the DAG G if all conditional independencies in P are entailed in G, and Markovian if the

factorization property P(X1, . . . , Xp) =
∏p

j=1 P(Xj|ΠG
j ) is satisfied. Here ΠG

j is the set of

all parents of a node j. In contrast to constraint-based methods, the score-based approach

treats structure learning as a combinatorial optimization problem. In particular, in the

DAG space, they search and test various graph structures by assigning a score to each

graph and selecting the one that best fits the data. Finally, the functional-based methods
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restrict the functional class and the error term distributions so as to achieve identification.

2.1 Bayesian Networks and SCM

The SCM for a random vector X = {Xi|i ∈ E} is a 4-tuple (X, ε,F , P (ε)), where ε is

a set of background (exogenous) variables, F is a set of functions {f1, f2, . . . , fp} where

each fi maps εi ∪ ΠG
i to Xi, and P (ε) is a probability function defined over the domain of

ε. SCM posits casual relations, such that for all i ∈ E, Xi := fi(Π
G
i , εi), where εi, i ∈ E

are jointly independent and the causal structure is encoded in a DAG G (Pearl, 2009;

Bareinboim et al., 2020). For the recent overview of SCM in the context of econometrics,

see Hünermund and Bareinboim (2023).

For example, if fi’s are linear and have additive noise, SCMs can be written as

Xj :=
∑
k∈ΠG

j

βjkXk + εj, j = 1, . . . , p, (1)

Denoting the weighted adjacency matrix B = (βjk) with zeros along the diagonal, the

vector representation of (1)

X := BX+ ε, (2)

where ε := (ε1, . . . , εp)
′
and X := (X1, . . . , Xp)

′
. A DAG admits a topological order-

ing ϱ(·) with which a p × p permutation matrix Pϱ can be associated such that Pϱx =

(xϱ(1), . . . , xϱ(p)), for x ∈ Rp. The existence of a topological order leads to the permutation-

similarity of B to a strictly lower triangular matrix Bϱ = PϱBP
′
ϱ by permuting rows and

columns of B, respectively (Bollen, 1989).

2.2 Complex-Valued Bayesian Networks and cSCM

We define Y ∈ Cp, be iid complex-valued, proper random vectors. The complex-valued

SCM and corresponding DAG G can be defined analogously to real-valued SCM by

Y := f(Y , εc) (3)
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For example, for linear Gaussian BN Y ∼ Nc(0,Σc), then E[Y Y H ] = Σc ∈ Cp×p =

σ2(I − B)−1{(I − B)H}−1, and the weighted adjacency matrix B ∈ Cp×p is potentially

complex-valued where the subscript c indicates that the distribution is complex-valued

and AH denotes the conjugate transpose (A∗)
′
. For details on complex-valued Gaussian

distribution, see Chapter 2 in Andersen et al. (1995).

3 Complex-Valued Bayesian Networks For Time Se-

ries

We now return to structure learning for time series, given X(t) ∈ Rp or Cp for t = 1, . . . , T

such that the autocovariance function satisfies
∑∞

h=−∞ |γ(h)| <∞, i.e. the spectral density

matrix exists (Brockwell and Davis, 1986). Recall that the discrete Fourier transform

(DFT) for the time series X(t) is

d(ωk) =
1√
T

T∑
t=1

X(t)exp(−2πiωkt), (4)

d∗(ωk) = d(−ωk) = d(1 − ωk) and from (Brillinger, 1981, Theorem 4.4.1) as T → ∞,

d(ωk), k = 2, 3, . . . , (T/2) − 1 are independent complex Gaussian Nc(0, S(ωk)) random

vectors and for k = {1, T/2, T}, d(ωk) are independent real Gaussian Nr(0, S(ωk)), where

S(ωk) is the spectral density matrix at the Fourier frequency ωk. We assume that the

DFT d(ωk) satisfies the cSCM with the additive error at each Fourier frequency ωk, k =

1, . . . , T/2:

d(ωk) = f(d(ωk)) + ε(k). (5)

We denote the adjacency matrix of the graph G by W , where Wij = 1 if d(ωk)j → d(ωk)i.

Note that if f is linear then the coefficient matrix B has the same non-zero pattern as W .
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3.1 Linear Case

In this section, we assume f is linear in (5)

d(ωk) := B(ωk)d(ωk) + ε(k). (6)

where B(ωk) ∈ Cp×p entails the underlying structure of the DAG at frequency ωk, k =

1, . . . , T/2. Consequently, from the inverse Fourier transform and (6), the time series is

generated from the transfer function model

X(t) =
T∑

k=1

(Ip −B(ωk))
−1 exp(2πiωkt)ε(k), (7)

where i =
√
−1, ωk = k/T, k = 1, . . . , T and ε(k) are independent Nc(0, (1/T )Ip), ε(k) =

ε∗(T − k) for ωt ̸= {0, 0.5, 1}, and real Gaussian Nr(0, (1/T )Ip) otherwise. Moreover, from

(5), the spectral density matrix can be estimated by periodogram, defined as:

I(ωk) =
1

T
(Ip −B(ωk))

−1{(Ip −B(ωk))
−1}H . (8)

In general, I(ωk) is an unbiased estimator of the spectral density S(ωk), but not consis-

tent even under classical fixed-p asymptotics (Brillinger, 1981, Theorem 5.2.4). To insure

consistency, it is common to use a smoothed periodogram estimator

Ŝ(ωk) =
1

2m+ 1

∑
|k|≤m

I(ωj+k) (9)

where m is chosen as m = o(
√
T ).

A point of departure for our algorithm is an important result for the real-valued SCM,

which state that the graph G and the parameters B can be identified from the covariance

matrix under equal variance and causal sufficiency assumptions (Peters and Bühlmann,

2013). Ghoshal and Honorio (2018); Chen et al. (2019) observe that the ordering of certain

conditional variances implies the identifiability of parameters. Consequently, by ordering

the estimates of those variables, the authors establish a fast method to learn the topolog-

ical ordering of the variables. Next lemma, which is the extension of Chen et al. (2019,
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Lemmas 1) to cSCM defined in (6), is used to recover such topological ordering for cSCM.

The proof is provided in Appendix A.1, for completeness.

Lemma 1 Let Y ∈ Cp is generated as in (6). If the parent set ΠG
j = ∅ then var(Y j) =

1/T , otherwise var(Y j) ≥ 1/T ∗ (1 + η) > 1/T , where η = min(k,j)∈E βjkβ
∗
jk.

The findings in Lemma 1 enable the modification of Chen et al. (2019, Algorithm 1) to

accommodate the complex-valued case. In this modified algorithm, the topological order-

ing of the Fourier transforms d(ωk) is estimated at each Fourier frequency by iteratively

selecting a source node. This selection is based on comparing variances conditional on the

previously chosen variables. Notably, the findings imply that the conditional variance of

var(Y j|Y C), where C is a set, equals 1/T if the parents of j form a subset of C, and is

greater than or equal to 1/T (1 + η) otherwise.

Remark 1 We note that the assumption of equal error variance is commonly used in

application with variables from a similar domain, spatial or time series data (Rajaratnam

and Salzman, 2013; Park, 2020).

The main distinction between FreDom and Chen et al. (2019) is that, at each frequency

point, the conditional variances are derived from the (inverse) spectral density matrix,

rather than the covariance matrix. Algorithm 1 provides a summary of the main steps.

To select a source node by comparing conditional variances, in Algorithm 1, we minimize

the frequency domain analog of Chen et al. (2019) criterion

f(S(ωk),Θ[k, (i− 1)], j) = [Ŝ(ωk)]j,j − [Ŝ(ωk)]j,Θ[Ŝ(ωk)]
−1
Θ,Θ[Ŝ(ωk)]Θ,j

=
1

([Ŝ(ωk)]
−1
Θ∪{j},Θ∪{j})j,j

.
(10)

The next theorem shows that, under certain assumptions on N = 2m + 1, at each

frequency ωk, the Algorithm 1 recovers a topological ordering of the underlying true graph

with probability at least 1− ε. The proof is provided in Appendix A.2.

9



Algorithm 1 Stage 1 of FreDom Algorithm

Input:

Ŝ(ωk)← spectral density matrix at frequency ωk

Θ ∈ Rp ← ∅

for i = 1 to p do

θ ← argminj∈V/Θ[i−1] f(Ŝ(ωk),Θ[(i− 1)], j)

Θ[i] = θ

end for

Output:Θ

Theorem 1 Let d(ωk) satisfies (6) and time series is generates as in (7). Suppose that

the spectral density matrix S(ωk) has minimum eigenvalues λmin > 0. If

N > p2 log
(16p2

ε

)
12800max

i
([S(ωk)]

2
ii)
(ηλmin + (2/T )(1 + η)

ηλ2
min

)
,

then Algorithm 1 using criterion (10) recovers a topological ordering with probability at least

1− ε.

3.2 Recovering DAG from topological ordering

In the first stage of FreDom, Algorithm 1 returns the topological ordering of a DAG at each

frequency. In Stage 2 of FreDom, we recover the DAG given the topological ordering. As

discussed in Section 2.1, given a topological ordering ϱ, Bϱ is lower triangular. Similarly,

from (5) and (8), given the ordering, Bϱ(ωk) is lower triangular, and Lϱ(ωk) =
√
T (I −

Bϱ(ωk)) is the Cholesky factor of the inverse spectral density matrix Ωϱ(ωk) = S−1
ϱ (ωk) =

LH
ϱ (ωk)Lϱ(ωk). From now on, whenever there is no confusion, we drop the subscript ϱ.

From (4), in frequency ωk, the pdf for d(ωk) is

g(d(ωk)) =
exp(−dH(ωk)L

H(ωk)L(ωk)d(ωk))

πpdet(S(ωk))
(11)
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As we discussed in Section 3.1, to achieve a consistent estimator of spectral density (9),

we smooth it along the N = 2m+1 frequencies, where m ≈ o(
√
T ) is the half-window size.

Therefore, the pdf for d(ωk) can be written as

g(d(ωk)) =
exp{−Ntr(Ŝ(ωk)L

H(ωk)L(ωk))}
πNpdet(LH(ωk)L(ωk))−N

, (12)

where Ŝ(ωk) is given in (9) and the convex penalized log-likelihood function is

WFreDom[L(ωk)] = log det(LH(ωk)L(ωk))− tr(Ŝ(ωk)L
H(ωk)L(ωk)) + λN

∑
i>j

|L(ωk)ij|,

(13)

with λN = λ/N . Let xi = {Lij(ωk)}ij=1 denote the vector of lower triangular and diagonal

entries in the ith row of L(ωk) and Ŝi(ωk) is the i × i submatrix of Ŝ(ωk) for 1 ≤ i ≤ p.

After some algebra, it follows from (13)

WFreDom[L(ωk)] =

p∑
i=1

(xi)H Ŝi(ωk)x
i − 2 logxi

i + λ
i−1∑
j=1

√
|xi

j|

=

p∑
i=1

WFreDom,i(x
i)

(14)

where for 2 ≤ j ≤ p

WFreDom,i(x
i) = (xi)H Ŝi(ωk)x

i − 2 log xi
i + λ

i−1∑
j=1

√
|xi

j|

and

WFreDom,1(x
i) = [L(ωk)]

2
11[S(ωk)]11 − 2 log[L(ωk)]11

Equation (14) demonstrates that the optimization of WFreDom[L(ωk)] decomposes into

an optimization of p parallel functions, and the functions depend on disjoint sets of pa-

rameters. Similar to Khare et al. (2019, Lemmas 2.2 and 2.3), it is easy to show that any
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global minimum of WFreDom[L(ωk)] over the open set Lp (a set of complex-valued lower

triangular matrices with positive diagonals) lies in Lp.

We now provide an algorithm to minimize WFreDom[L(ωk)]. Since {xi}pi=1 separates

the non-zero parameters in L(ωk), it follows that optimizing WFreDom[L(ωk)] is equivalent

to a parallel optimization of WFreDom,1(x
i), 1 ≤ i ≤ p. It is important and timely

to note that xi is complex-valued. Thus, we resort to Wirtinger calculus (Wirtinger,

1927; Brandwood, 1983; Dallakyan et al., 2022), together with the definition of Wirtinger

subgradients (Bouboulis et al., 2012) for the optimization. The next lemma show that a

minimizer of WFreDom,1(x
i) can be computed in a closed form. The proof is provided in

Appendix A.3.

Lemma 2 A minimizer of WFreDom,i(x
i) can be computed in a closed form.

xi
j = −

(
1− λ

2|
∑

l ̸=j(Ŝi(ωk))ljxl|

)
+

∑
l ̸=j(Ŝi(ωk))ljxl

(Ŝi(ωk))jj
(15)

for 1 ≤ j ≤ i− 1, and

xi
i =
−Re(

∑
l ̸=k(Ŝi(ωk))lixl) +

√
Re(

∑
l ̸=i(Ŝi(ωk))lixl)2 + 4(Ŝi(ωk))ii

2(Ŝi)ii
(16)

Using Lemma 2, we develop a cyclic coordinatewise algorithm, where the elements of xi

are iteratively updated until convergence. Algorithm 2 summarizes Stage 2 of the FreDom

algorithm.

Note that given a topological ordering, Algorithm 2 solves p modified complex-lasso

problems. Under similar assumptions and techniques, as in Tugnait (2022, Theorem 1)

and Deb and Basu (2023), it can be shown that our proposed estimator converges to true

L(ωk) with high probability.
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Algorithm 2 Stage 2 of FreDom: minimization algorithm for WFreDom
Input:

L̂(ωk)
(0),← initial estimate

for i = 1 to p do

Set x̂i to be minimizer of WFreDom,i(x
i) by using coordinatewise algorithm

Construct L̂(ωk) by setting its ith row as x̂i

end for

4 Application to Stock Volatility Data

We utilize the FreDom method to analyze data on stock return volatility. Section 6

presents additional simulation results. The data used in this study is sourced from Demirer

et al. (2018), where authors estimate the global bank network connectedness. The orig-

inal dataset comprises 96 banks from 29 developed and emerging economies (countries),

spanning the period from September 12, 2003, to February 7, 2014. To facilitate clarity,

we specifically focus on economies with more than four banks, resulting in a selection of

54 banks (for further details, please refer to Demirer et al. (2018)). Figure 2 visualizes

the estimated adjacency matrix generated by the FreDom algorithm at various frequencies.

The rows and columns of the matrix are sorted by country. The tuning parameter for the

FreDom algorithm is determined using the extended Bayesian information criterion (BIC)

(Foygel and Drton, 2010). We define a search space grid [λmin, λmax], where the selection of

λmin and λmax is made to avoid excessively dense or sparse models. To initiate the search,

we find the value of λ∗ that yields a graph without edges and set λmax = λ/2 to prevent

highly sparse models. Additionally, we employ a ”warm” starting strategy across the grid

to expedite convergence.

An important observation derived from this exercise is that Fourier frequencies in close

proximity exhibit a tendency to possess a similar causal structure and topological order-

13



Figure 2: Estimated adjacency matrix for different frequencies with rows and columns

sorted by country.

ing. This claim is supported by the block diagonal structure depicted in Figure 3, which

showcases the Spearman correlation of the topological orderings across frequencies.

Figure 3: Spearman correlation of topological orderings over frequencies.

Hence, it is justifiable to assume that the structure remains invariant for frequencies

that are in close proximity to each other. The joint estimation of graphical models has

shown to be more accurate in practice than separate estimation (Danaher et al., 2014).
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Further details on this assumption are provided in the subsequent section.

5 Joint estimation

Let J = {ω1, . . . , ωM} be the set of selected (possibly in close proximity) frequencies with

cardinality M = |J |. The discussion in the previous section motivates the following as-

sumption:

Assumption 1 (Structure Invariance) The structure of time series X(t) and DFT d(ωk), (k, t =

1, . . . , T ) remains unchanged across the time and M frequency points.

Next, we define a summary DAG for the frequency domain.

Definition 1 A summary DAG G for the time series X(t) and specified frequency points

J = {ω1, . . . , ωM} is a DAG which has an arrow from X(t)i to X(t)j, i ̸= j, if the corre-

sponding adjacency matrix Wji(ωk) ̸= 0 for some k = 1, . . . ,M .

To accommodate joint estimation over selected frequencies, Algorithms 1 and 2 need a

slight modification.

Algorithm 1 modification: After estimating topological ordering over J = {ω1, . . . , ωM}

frequencies, we select the most commonly occurring ordering.

Algorithm 2 modification: Given the topological ordering, the joint log-likelihood

function over M frequencies is

W (L[·]) =
M∑
k=1

N [log det(LH(ωk)L(ωk))− tr(S̃(ωk)L
H(ωk)L(ωk))].

From Assumption 1, B(ωk), and therefore L(ωk), have the same structure over k =

1, . . . ,M frequency point. Thus, to impose a structure similarity assumption on the Fourier

frequency points, we define the following constrained optimization problem
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min
L[·],Z

−W (L[·]) + P (Z, λ),

s.t. L(ωk) = Z, k = 1, . . . ,M,

(17)

where

P (Z, λ) = λ
∑
ij

|Zij|

L[·] = {L(ω1), . . . , L(ωM)}.

(18)

The constraints L(ωk) = Z, k = 1, . . . ,M is used to ensure that Assumption 1 is

satisfied, i.e., in each Fourier frequency the summary DAG structures are the same and

the penalty P (Z, λ) introduces sparsity. The minimization problem (17) is convex, and the

existence of a minimizer is guaranteed for any choice of λ ≥ 0 (Rockafellar, 1970, Theorem

27.2). We appeal to the ADMM (alternating direction method of multipliers) algorithm

for minimizing (17) (Boyd et al., 2011; Dallakyan et al., 2022; Ng and Zhang, 2022). The

ADMM minimizes the scaled augmented Lagrangian

Lρ(Θ[·], Z, U [·]) =
M∑
n=1

N [− log det(LH(n)L(n)) + tr(S̃(n)LH(n)L(n))]

+ ρ
M∑
n=1

(∥L(n)− Z + U(n)∥2F − ∥U(n)∥2F ) + P (Z, λ),

(19)

where ρ > 0 is the penalty coefficient, U(n), n = 1, . . . , n are the Lagrangian multipliers,

and ∥X(n)∥2F =
∑

ij |Xij(n)|2. Given (L(k)[·], Z(k), U (k)[·]) matrices in the kth iteration, the

ADMM algorithm implements the following three updates for the next (k + 1) iteration:

(a) L(k+1)[·]← argminL[·] Lρ(Θ[·], Z(k), U (k)[·])

(b) Z(k+1) ← argminZ] Lρ(L
(k+1)[·], Z, U (k)[·])

(c) U (k+1)[·]← U (k)[·] + (L(k+1)[·]− Z(k+1))

Interestingly, as we show in Appendix B, each of the updates (a)-(b) has closed-form

solutions. Moreover, in contrast to real-valued ADMM formulation, where L is real-valued,
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in (17), L[·] is complex-valued. As before, to solve complex-valued optimization, we resort

to Wirtinger calculus (Wirtinger, 1927; Brandwood, 1983).

Figure 4 illustrates joint estimation of the stock volatility data for the frequencies con-

sidered in Section 4.

Figure 4: Estimated adjacency matrix using joint FreDom. Rows and columns are sorted

by country.

As can be seen, compared to findings in Figure 2, banks from the same country tend

to compose tighter groups, meanwhile being connected to banks from other countries.

The latter result has been confirmed in many macro-economic studies (Demirer et al.,

2018). The other interesting finding that needs more investigation is the causal relationship

between UK and US banks.

6 Numerical Experiments

In this section, we present the performance of FreDom, Joint FreDom on various simulated

time series data. To facilitate comparison, we introduce an extended version of FreDom,

denoted as exFreDom, in Appendix C. exFreDom is an extended version of NOTEARS

(Zheng et al., 2018) adapted to the frequency domain. It is utilized in Experiment 3 and

the Air Pollution data analysis in Section 6.1.
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Figure 5: Comparing FreDom (top row) with PDC (bottom row) over frequencies. Columns

correspond to causal directions.

One challenge in adopting the joint frequency domain approach is the need for param-

eter estimation at each Fourier frequency. For instance, in the case of FreDom with a

p-dimensional time series and M Fourier frequencies, it estimates Mp(p+1)/2 parameters.

Based on simulations, satisfactory results are obtained by choosing M = (5, 10).

For all experiments, the time series length is set to T = 1000, the half-window size is

m =
√
T/2, and each simulation is repeated 50 times. In our simulations, we assume oracle

sparsity for all methods. This means that each method employs tuning parameters that

yield the true number of edges.

Experiment 1: Two dimensional Time Series. In this experiment, we compare Fre-

Dom with partial directed coherence (PDC) introduced in Baccala and Sameshima (2001).

We generate two-dimensional series following the procedure described in the subsequent

experiment, ensuring that Y2t → Y1t in each Fourier frequency.

Figure 5 summarizes the results. Each column represents the causal direction Y1t → Y2t

and Y2t → Y1t respectively, while the rows correspond to the outcomes from FreDom and

PDC. In the case of FreDom, a value of 0 indicates the absence of an edge, while 1 signifies
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the presence of an edge. For PDC, absolute values closer to 1 indicate causal dependence,

while values closer to 0 suggest no relationship. As observed, FreDom successfully captures

the true causal direction, while PDC yields small values in both directions, incorrectly

indicating no relationship.

Experiment 2: Time Series from (7)

Experiment 2: Time Series from (7). We utilize (Dai and Guo, 2004, Theorem 1)

(for details, see Appendix E), which states that (7) can be used to generate a time series

whose topological order and spectrum are identical to the given order and spectrum at

Fourier frequencies. We simulate complex-valued time series from the provided random

summary DAG for p = 5, 10, 15.

For each Fourier frequency ωk, we construct the Cholesky factor of the inverse spectral

density by following these steps: (1) Fix the order and fill the adjacency matrix with zeros,

(2) Replace every matrix entry in the lower triangle (below the diagonal) by independent

realizations of Bernoulli(s) random variables with success probability s , 0 < s < 1, where

s reflects the sparseness of the model. We select s = 0.4 for this experiment. (3) Finally,

in the adjacency matrix replace each entry with a 1 by the independent realizations of a

c1 cos(4πωk) + 1.2ic2 sin(2πωk), where c1, c2 are randomly selected from the U [−0.1,−1] ∪

[0.1, 1] distribution. The above procedure ensures that the DAG structure of the generated

time series is the same for all frequencies, and B(ωk) in (5) is only a function of ωk. In

Figure 6 we compare the performance of Joint FreDom and VARLINGAM (Hyvärinen et al.,

2010) using the structural hamming distance (SHD). We can see that FreDom outperforms

VARLINGAM for all K.

Experiment 3: Data from the non-linear SVAR Model. Similar to Peters et al.

(2013), we simulate dataset from X1(t) = b11X2(t)
2 + b12X1(t − 1) + b13X2(t − 1)2 +
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Figure 6: SHD metrics for Experiment 2.

u1(t), X2(t) = b22X2(t − 1) + u2(t), X3(t) = b31X1(t)
3 + b32X2(t − 1)2 + b33X3(t − 1) +

u3(t), X4(t) = exp(b41X3t) + b42X4(t − 1) + u4(t) , where ui(t) ∼ N(0, 1) and bij ∼

U [−0.1,−0.4] ∪ [0.1, 0.4]. In this experiment, we compare performance of Joint FreDom,

ExFreDom, VARLIGNAM and DYNOTEARS (Pamfil et al., 2020) using SHD and Struc-

tural Intervention Distance (SID) (Peters and Bühlmann, 2015). The SID quantifies the

proximity between two DAGs in terms of their respective causal inference statements. A

lower value of SID and SHD indicates a better performance. Figure 7 reports the simulation

results.

Figure 7: SHD and SID metrics for Experiment 2.

6.1 Air Pollution Data

We use (Ex)FreDom to estimate a summary DAG for 5 time series of air pollutants of length

8370. The series was recorded hourly during the year 2006 at Azusa, California. Data
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can be obtained from the Air Quality and Meteorological Information System. Recorded

variables include CO and NO (pollutants mainly emitted from cars and industry), NO2 and

O3 (generated from different reactions in the atmosphere), and the global solar radiation

intensity R. The similar datasets were analyzed in Dahlhaus and Eichler (2003) and Davis

et al. (2016).

Figure F.2 in Appendix F shows an average daily plot of five variables. Due to early

morning traffic, CO and NO increase early, resulting in NO2 increase. Higher NO2 levels

increase the Ozone (O3) and the global radiation levels throughout the day.

Following Dahlhaus and Eichler (2003), we apply FreDom to the residual series af-

ter subtracting the daily averages, as shown in Figure F.2. The missing values in the

original series are filled in by interpolating the residual series using splines. Figure 8(a)

and Figure 8(b) report the estimated summary DAGs from FreDom and ExFreDom, re-

spectively. The weights on the edges report the absolute values of the partial spectral

coherence, which are frequency domain analogs of partial correlations. Additional results

for LINGAM, NOTEARS, and Granger causality are available in Appendix F.

CO

NO

0.53

NO2

0.42

OZONE

0.210.26

0.34

R

(a) FreDom

CO

NO

0.53

NO2

0.42OZONE

0.21

0.19 0.34

R

(b) ExFreDom

Figure 8: The estimated DAG from the air pollution data.

The summary DAG of FreDom correctly capturing the generation of NO2 from CO

and NO and the contemporaneous relation of CO and NO as the latter two pollutants are

emitted from cars. However, we cannot validate the direction of the edge from the CO to

NO. The edge from NO2 to O3 indicates that the latter is created from NO2. Compared to
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FreDom, ExFreDom misses edge from NO to NO2 and the edge from O3 to NO2 is reversed.

7 Conclusion

In this paper, we present a frequency domain approach for recovering the topological or-

dering of time series. Based on the obtained ordering, we propose a penalized likelihood

approach to learn the summary directed acyclic graph (DAG). Additionally, we extend the

algorithm to enable joint estimation. The simulation results are highly encouraging and

demonstrate the effectiveness of our proposed method.

For future work, we suggest exploring situations in which time series are affected by

unobserved confounders or undersampling. These scenarios present interesting challenges

that warrant further investigation.

SUPPLEMENTARY MATERIAL

Appendix: “FreDomsupplement.pdf” includes supplementary materials covering proofs

and additional simulations for the proposed FreDom algorithm.

Stock and Air Pollution datasets: Datasets used in the illustration of FreDom in Sec-

tions 6.1 and 4.

Python code for examples: A Python script for reproducibility. The Stata code is

available upon request.
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Peters, J. and P. Bühlmann (2013, 11). Identifiability of Gaussian structural equation

models with equal error variances. Biometrika 101 (1), 219–228.

Peters, J., D. Janzing, and B. Schlkopf (2017). Elements of Causal Inference: Foundations

and Learning Algorithms. The MIT Press.

Peters, J., D. Janzing, and B. Schölkopf (2013). Causal inference on time series using

restricted structural equation models. In Advances in Neural Information Processing

Systems, Volume 26.

Peters, J., J. M. Mooij, D. Janzing, and B. Schölkopf (2014). Causal discovery with

continuous additive noise models. Journal of Machine Learning Research 15 (58), 2009–

2053.

Plis, S., D. Danks, C. Freeman, and V. Calhoun (2015). Rate-agnostic (causal) structure

learning. Advances in neural information processing systems , 3303–3311.

Rajaguru, G. and T. Abeysinghe (2008). Temporal aggregation, cointegration and causality

inference. Economics Letters 101 (3), 223–226.

Rajaratnam, B. and J. Salzman (2013, October). Best permutation analysis. J. Multivar.

Anal. 121, 193–223.

Rockafellar, R. T. (1970). Convex analysis. Princeton Mathematical Series. Princeton

University Press.

Runge, J., S. Bathiany, E. Bollt, G. Camps-Valls, D. Coumou, E. Deyle, C. Glymour,
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