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In standard calculus courses we all encounter the notion of derivative and learn how to compute and apply
them. However, now we will go a little bit deeper and will try to understand the theory behind calculus.

7.1 Derivative

Suppose f is a function defined on an interval I and let x0 and x be points of I. The usual difference quotient
is given by

f(x)− f(x0)

x− x0
, which is the slope of the chord determined by the point (x, f(x)) and (x, f(x0)) or in other way we can
interpret the quotient as the average rate of change of f on the interval with endpoints at x and x0.

The usual definition of derivative is following

Definition 7.1 Let f be defined on an interval I and let x0 ∈ I. The derivative of f at x0, denoted by
f ′(x0) is defined as

f ′(x0) = lim
x→x0

[
f(x)− f(x0)

x− x0
(7.1)

provided this limit exists.

If f is differentiable at all points x ∈ I, we say that f is differentiable on I.

Example 1 Let f(x) = x2 and let x0 ∈ R. If x ∈ R, x 6= x0, then

f(x)− f(x0)

x− x0
=
x2 − x02

x− x0
=

(x− x0)(x+ x0)

x− x0
= x+ x0

Since x 6= x0, taking the limit we have

lim
x→x0

f(x)− f(x0)

x− x0
= lim

x→x0

(x+ x0) = 2x0

, giving as the derivative,
f ′(x0) = 2x0

7.1.1 Differentiability and Continuity

A continuous function need not be differentiable (for example f(x) =—x—), however, the differentiable
function is always continuous.

0All errors are my own.
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Theorem 7.2 Let f be defined in a neighborhood I of x0. If f is differentiable at x0, then f is continuous
at x0.

We can use this theorem in two ways.I f we know that a function has a discontinuity at a point, then we
know immediately that there is no derivative there.O n the other hand, if we have been able to determine by
some means that a function is differentiable at a point then we know automatically that the function must
also be continuous at that point.

7.1.2 Combinations of Differentiable Functions

Functions can be combined algebraically by multiplying by constants, by addition and subtraction, by
multiplication, and by division.T o each of these there is a calculus rule for computing the derivative.

Theorem 7.3 Let f and g be functions defined on an interval I, and assume both are differentiable at some
point x0 ∈ I. Then,

1. (f + g)′(x0) = f ′(x0) + g′(x0)

2. (kf)′(x0) = kf ′(x0)

3. (fg)′(x0) = f ′(x0)g(x0) + f(x0)g′(x0)

4. (f/g)′(x0) = f ′(x0)g(x0)−f(x0)g
′(x0)

g(x0)2
, given that g(x0) 6= 0

The proof of (1) and (2) follow easily from the definition of the derivative and appropriate limit theorems
and left as an homework. I will show the proof for part (3) during class.

Example 2 1. f(x) = c

2. f(x) = ax+ b

3. f(x) = xn

4. f(x) = 2x
1−x2

7.1.3 Chain Rule

With the differentiation formulas developed thus far, we can find derivative of functions f , for which f(x) is
finite sum of products or quotients. However, we have not learned to deal with the composite functions of
the form h ◦ g, which can be defined by the equation

f(x) = h(g(x))

, where h and g are functions such that the domain of h includes the range of g.

The chain rule tells us how to express the derivative of f in terms of the derivatives h′ and g′.

Theorem 7.4 (Chain Rule) Let f be the composition of two functions h and g, say f = h ◦ g. Suppose
that both derivatives g′(x) and h′(y) exists, where y = g(x). Then the derivative f ′(x) also exists and is
given by the formula

f ′(x) = h′(y) · g′(x) (7.2)
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Instead of giving the proof we will solve some examples, so you will be familiar with the usual techniques.

Example 3 1. f(x) =
√

1 + x2

2. f(x) = x
sqrt4−x2

3. g(x) = f(x2)

4. f(x) = [g(x)]n

7.1.4 Local Extrema

We have seen in previous note that a continuous function defined on a closed interval [a, b] achieves an
absolute maximum value and an absolute minimum value on the interval.So there must be points where the
maximum and minimum are attained. But how do we go about finding such points? The idea is to look for
the critical points (i.e., points where the derivative is zero).

Theorem 7.5 Let f be defined on an interval I. If f has a local extremum at a point x0 in the interior of
I and f is differentiable at x0, then f ′(x0) = 0.

The proof will be provided during the class.

7.1.5 Mean Value Theorem

The question we are trying to answer in this section is how does information about the derivative provide
us with information about the function? One of the keys to providing that information is the mean value
theorem. Before formally defining and proofing Mean Value Theorem1, we need to state one more theorem.

Theorem 7.6 (Rolle’s Theorem) Let f be a function which is continuous everywhere on a close interval
[a, b] and has a derivative at each point of the open interval (a, b). Also, assume that

f(a) = f(b)

. Then there is at least one point c in the open interval (a, b) such that f ′(c) = 0.

We will not proof this theorem, but the Figure 7.1 gives the geometric interpretation of Rolle’s theorem and
should be enough to understand the concept.

Now we use Rolle’s theorem to prove the mean value theorem.

Theorem 7.7 (Mean Value Theorem For Derivatives) Assume that f is continuous everywhere on a
closed interval [a, b] and has a derivative at each point of the open interval (a, b). Then there is at least one
interior point c of (a, b) for which

f(b)− f(a) = f ′(c)(b− a) (7.3)

The proof will be provided during the class.

1I decided to proof this theorem, since you have similar problems in your Econ 629 class.
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Figure 7.1: Geometric interpretation of Rolle’s theorem. (Figure borrowed from Apostol, 1969.)

7.1.6 Application of the Mean Value Theorem

Now we use mean value theorem to deduce properties of a function from a knowledge of the sign of its
derivative.

Theorem 7.8 Let f be differentiable on an interval I.

1. If f ′(x) ≥ 0 for all x ∈ I, then f is nondecreasing on I.

2. If f ′(x) > 0 for all x ∈ I, then f is increasing on I.

3. If f ′(x) ≤ 0 for all x ∈ I, then f is nonincreasing on I.

4. If f ′(x) < 0 for all x ∈ I, then f is decreasing on I.

5. If f ′(x) = 0 for all x ∈ I, then f is constant on I.

We will prove (1) during the class, the rest is left as an homework.

7.1.7 Convexity and Derivative

The geometric properties we wish to capture when we say a function is convex or concave do not depend on
differentiability properties. The condition is that the graph should lie below (or above) all its chords. The
following definitions make this concept precise.

Recall that, we say that the function is convex if,

Definition 7.9 If for all x1, x2 ∈ I and α ∈ [0, 1] the inequality

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2)

is satisfied.
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If the reverse inequality is applied, we say that f is concave on I. If the inequalities are strict for all α ∈ (0, 1)
we say f is strictly convex or strictly concave on I.

7.1.8 L’Hopital’s Rule

Suppose that f and g are defined in a neighborhood of x0 and that

lim
x→x0

f(x) = A and lim
x→x0

g(x) = B.

According to our usual theory of limits, we then have

lim
x→x0

f(x)

g(x)
=

limx→x0
f(x)

limx→x0 g(x)
=
A

B
,

unless B = 0. The question we want to answer is what happens if B = 0? Let us try to generalize from
these two examples. Suppose f and g are differentiable in a neighborhood of x = a and that f(a) = g(a) = 0.
Consider the following calculations and what conditions on f and g are required to make them valid.

f(x)

g(x)
=
f(x)− f(a)

g(x)− g(a)
=

(
f(x)−f(a)

x−a

)
(

g(x)−g(a)
x−a

) x→a−−−→ f ′(a)

g′(a)
= lim

x→a

f ′(x)

g′(x)

If these calculations are valid, they show that under these assumptions (f(a) = g(a) = 0 and both f(a) and
g(a) exist) we should be able to claim that

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

Now we provide a theorem of the 0
0 rule identical with our introductory remarks.

Theorem 7.10 Suppose that the functions f and g are differentiable in a neighborhood N of x = a. Suppose

1. limx→a f(x) = 0,

2. limx→a g(x) = 0,

3. For every x ∈ N, g′(x) 6= 0, and

4. = limx→a
f ′(x)
g′(x) exists

Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

Example 4 Evaluate

1. limx→0 ln(1 + x)/x

2. limx→0(1 + x)2/x.

3. limx→0 sinx/x
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