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Now we are ready to introduce and define the notion of sequence.

4.1 Sequences

A sequence (of real numbers, of sets, of functions, of anything) is simply a list. There is a first element in the
list, a second element, a third element, and so on continuing in an order forever. In mathematics a finite
list is not called a sequence; a sequence must continue without interruption. For a more formal
definition notice that the natural numbers are playing a key role here.Every item in the sequence (the list)
can be labeled by its position; label the first item with a ”1,” the second with a ”2,” and so on.Seen this
way a sequence is merely then a function mapping the natural numbers N into some set. We state this as
a definition. Since this chapter is exclusively about sequences of real numbers, the definition considers just
this situation.

Definition 4.1 A sequence of real numbers is a function

f : N → R

Thus we can frite sequence as
f(1), f(2), . . . , f(n), . . .

. The function values f(1), f(2), . . . are called the terms of the sequence. Now we give several famous
examples of sequences.

Example 1 • Arithmetic Progression: The sequence

c, c+ d, c+ 2d, . . . , c+ (n− 1)d

, where number d is the common difference or as a formula

xn = c+ (n− 1)d

• Geometric Progressions: The sequence

c, cr, cr2, cr3, . . . , crn, . . .

. The number r is called the common ratio or as a formula

xn = crn−1

A sequence f whose terms are xn := f(n) will be denoted by x1, x2, . . . or {xn}n∈N . Thus 1, 1/2, 1/4, . . . rep-
resents the sequence {1/2n−1}n∈N and −1, 1,−1, 1, . . . represents the sequence {(−1)n}, finally 1, 2, 3, 4, . . .
represents the sequence {n}.

0All errors are my own.
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Definition 4.2 A nonempty set S of real numbers is said to be countable if there is a sequence of real
numbers whose range is the set S.

In the language of this definition then we can see that (1) any finite set is countable, (2) the natural numbers
and the integers are countable, (3) the rational numbers are countable, and (4) no interval of real numbers
is countable.By convention we also say that the empty set ∅ is countable.

4.1.1 Convergence

From elementary calculus , we know that the sequence

1,
1

2
,

1

3
,

1

4
, . . .

is getting closer and closer to the number 0. In other words the sequence converges to 0 or that the limit of
the sequence is the number 0. The limit concept is one of the fundamental building blocks of analysis. How
to define getting closer idea?

Definition 4.3 A sequence of real numbers {xn} is said to converge to a real number a ∈ R is and only if
for every ε > 0 there is an N ∈ N such that

n ≥ N implies |xn − a| < ε

The following phrases have the same meaning

• {xn} converges to a.

• a = limn→∞ xn.

• xn → L as n→∞

When xn → a as n → ∞, think of xn as a sequence of approximations to a, and ε as an upper bound for
the error of these approximations. So we choose number N such that the error is less than ε when n ≥ N .
Generally smaller ε implies larger N .

One thing you can notice from the definition is that xn converges to a if and only if |xn− a| → 0 as n→∞.
In particular, xn → 0 if and only if |xn| → 0 as n→∞.

Figure 4.1: Example of converged sequence. (Figure borrowed from [wade2004].)

Example 2 1. Prove that 1/n→ 0 as n→∞.

2. Does {(−1)n} converge or diverge.

In order to make you comfortable with proofing things, we will go head and proof the following lemma.
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Lemma 4.4 A sequence have at most one limit.

Proof: We proof by contradiction. Suppose that xn converges to both a and b. From definition of con-
vergence we know that ∃N1 and N2 : n ≥ N1 ⇒ |xn − a| < ε/2 and n ≥ N2 ⇒ |xn − b| < ε/2. Let
N = max{N1, N2}, By the choice of N1 and N2, n ≥ N implies both |xn − a| < ε/2 and |xn − b| < ε/2.
Therefor from triangle inequality

|a− b| ≤ |a− xn|+ |xn − b| < ε⇒ |a− b| < ε ∀ε > 0

. Thus a < b+ ε⇒ a ≤ b and b < a+ ε⇒ b ≤ a⇒ a = b

We say that the sequence {xn} is bounded above if ∃x ∈ R and a real number M , such that ∀n ∈ N , xn ≤
M . Similarly it is bounded below if and only if ∃m ∈ R : Xn ≥ m∀n ∈ N . The good question is, is there a
relationship between convergent sequences and bounded sequences? The answer is yes.

Theorem 4.5 Every convergent sequence is bounded,

Proof: Take ε > 1, since the sequence is convergent ∃N ∈ N : n ≥ N ⇒ |xn − a| ≤ 1. Hence by triangular
inequality |xn| ≤ 1 + |a| ∀n ≥ N . On the other hand for 1 ≤ n ≤ N , we have

|xn| ≤M := max{|x1|, |x2|, . . . , |xN |}

. Thus {xn} bounded by|xn| ≤ max{M, 1 + |a|}. There are two famous theorems that help as to proof
things using sequences.

Theorem 4.6 (Squeeze theorem) Let {xn}, {yn} and {wn} be real sequences.

1. If xn → a and yn → a⇒ ∃N0 ∈ N : xn ≤ wn ≤ ym ∀n ≥ N0 then wn → a as n→∞.

2. If x = limn→∞ xn. Then
a ≤ xk ≤ b ∀k = 1, 2, · · · ⇒ a ≤ x ≤ b

.

Sometimes we want ”correct” a sequence, for example to make it converge faster. To do that we introduce
the notion of sub-sequence.

Definition 4.7 A sub-sequence of a sequence {xn}, is a sequence of the form {xnk
}, where nk ∈ N and

n1 < n2 < . . .

Thus a sub-sequence xn1 , xn2 , . . . of x1, x2, . . . is obtained by deleting from x1, x2, . . . all xn’s except those
such that n = nk for some k.

Example 3 1, 1, 1, . . . is a sub-sequence of (−1)n obtained by deleting every other term (nk = 2k)

If a sub-sequence converges, the limit called a limit point of {xn}.

4.1.2 Monotone Sequences

The interesting thing you may notice is that although the sequence {−1}n does not converge, however it
has convergent subseqence (recall Example 2). This is not a coincidence, we will see that every bounded
sequence has a convergent subsequence. Lat start by defining monotone sequences.
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Definition 4.8 Let {xn} be a sequence of real numbers

1. {xn} is said to be increasing(strictly increasing) if and only if x1 ≤ x2 ≤ x2 ≤ . . . (respectively,
x1 < x2 < x3 < . . . )

2. {xn} is said to be decreasing(strictly decreasing) if and only if x1 ≥ x2 ≥ x2 ≥ . . . (respectively,
x1 > x2 > x3 > . . . )

3. {xn} is said to be monotone if and only if it is either increasing or decreasing.

In Theorem (4.5) we show that every convergent sequence is bounded, now we establish the converse result
for the monotone sequences.

Theorem 4.9 If {xn} is monotone and bounded, then it converges. In other words {xn} has a finite limit.

Let skip the proof of this theorem and do some examples.

Example 4 1. If a > 0, then a1/n → 1 as n→∞

2. If |a| < 1, then an → 0 as n→∞

We will solve only second part.
Proof: The first thing you should notice is that it is suffices to prove that |a|n as n→∞. (Can you bring
legitimate argument for this?). Note that |a|n is monotone decreasing, since |a| < 1 =⇒ |a|n+1 < an and
|a|n is bounded below by 0 (why?). Thus from Theorem 4.9 L := limn→0∞ exists.
Now we prove that L = 0. Suppose by contradiction not, i.e L 6= 0. Since |a|n+1 = |a| · |a|n, and taking
limits from both sides when n→∞, we see that L = |a| · L. However since L is not zero, therefore |a| = 1,
but this is a contradiction that |a| < 1.

4.1.3 Limits Supremum and Infimum

In the future we will deal with the situations, when we need generalization of limits.

Definition 4.10 Let {xn} be a sequence (real). Then the limit supremum of {xn} is the extended real
number

lim sup
n→∞

xn := lim
n→∞

(sup
k≥n

xk)

and the limit infimum
lim inf
n→∞

xn := lim
n→∞

( inf
k≥n

xk)

In interpreting this definition note that, by our usual rules on infs and sups, the values∞ and∞are allowed.

lim sup
n→∞

xn =∞ ⇐⇒ {xn} has no upper bounds

Similarly for the infimum. Let give a closer look to Definition (4.10). Consider the sequences

sn = sup
k≥n

xk := sup{xk : k ≥ n} and tn = inf
k≥n

xk := inf{xk : k ≥ n}

If you stare on this expressions a little bit, you may notice that sn is decreasing and tn is increasing. Thus
if xn is bounded then the usual limit always exist.
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Example 5 Find lim sup
n→∞

xn and lim inf
n→∞

xn

1. xn = (−1)n

2. xn = 1 + 1/n

4.2 References
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