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1.1 Strategies for proofs

In this section, we study the strategies to build proofs. Not all mathematics involves proofs. We learn
arithmetic and introduction to calculus before we learn how to prove. The first use of proofs is attributed to
Thales of Miletus from Alexandria. Euclid used an axiomatic system, which is needed for proofs. Statements
that are accepted as true are called axioms. The question is, what is it that we need to prove in mathematics?

We prove statements which are usually called theorems, propositions, lemmas, corollaries, and exercises.
Theorems tend to be important results; propositions are usually less important than theorems; lemmas are
statements that are used in the proofs of other results; corollaries are statements that follow easily from
other results.

Before discussing the ways to form the proofs, we fill a missing final ingredient in the formulation of theorems
and proofs.

1.1.1 Quantifiers and Logical Operators

Assume we wish to prove mathematical expression ”x3 > 27”. This expression as given is not precise since it
does not state which possible values of x which are under consideration. A more useful statement would be
”x3 > 27, for all real numbers x > 3”. The phrase for all real numbers x > 3 is an example of a quantifier.

Let give a closer look at the two main types of quantifiers. Let P (x) be a statements and U some collection
of possible values of x. A universal quantifier(operator) applied to P (x) is a statement denoted (∀ in
U)P (x), which is true if P (x) is true for all possible values of x in U . The two possible ways to write (∀ in
U)P (x) in English are:

• For all values of x in U , the statement P (x) is true;

• For each x in U , the statement P (x) is true;

The next type of quantifier is existential quantifier. An existential quantifier applied to P (x) is a
statement, denoted by (∃ in U)P (x), which is true if P (x) is true for at least one value of x in U . The
possible ways to write an existential quantifier in English are:

• For some value of x in U , we have P (x) is true;

• There exists some x in U such that P (x) holds;

Try to interpret the examples below. We will look on them closer during the class. Suppose, for example,
that the possible values of x are all AGEC Ph.D students, the possible values of y are all types of classes
offered by Texas A&M and T (x, y) = person x takes class y.

0All errors are my own.
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Example 1 Interpret (∀x)(∀y)T (x, y)

1. (∀y)(∀x)T (x, y)

2. (∃y)(∀x)T (x, y)

3. (∃x)(∃y)T (x, y)

4. Negate (∀x ∈ U)P (x)

5. Negate Example 1.1(a-d)

The other basic logical operators are:

Figure 1.1: Logical operators. Adapted from ”Unit 1: math camp” by Rodrigo A.Velez, Department of
Economics, Texas A&M University

1.1.2 Direct Proofs

The statement of almost every theorem can be viewed in the form P → Q, or some combination of such
statements. For example,in Theorem 1.1, three parts are in the form P → Q . We will proof it in class.

Theorem 1.1 Let n and m be integers.

(i) If n and m are both even, then n + m is even.

(ii) If n and m are both odd, then n + m is even.

(iii) If n is even and m is odd, then n + n is odd.

The type of proof, which starts by assuming P is true, and produce a series of steps, each one following from
the previous ones, and which eventually leads to Q, called a direct proof.

A direct proof presents a chain of consequences added to initial statement P in such a way that at each step
a proposition that is true is added, reaching a final statement Q.

Example 2 Let a, b and c be integers. If a|b1 and b|c, then a|c.
1a|b means a divides b, that is there is some integer q such that aq = b
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Example 3 Any integer divides zero.

Example 4 Let n be an integer. Show that if n is even, then 3n is even.

The usual direct proofs look something like ”Suppose P . . . . (argumentation) . . . Then Q.”

1.1.3 Proofs by Contrapositive and Contradiction

In this section we discuss two strategies for proving statements of the form P → Q. Both strategies rely
on the ideas developed in Unit 1. Recall that the contrapositive of P → Q (Problem 6 in Unit 1 ), namely
(¬Q → ¬P ) is equivalent to (P → Q) . Thus, in order to prove P → Q, we could start by assuming that
Q is false, and then by step-by-step argument go from ¬Q to ¬P . A proof of this sort is called proof by
contrapositive.

Example 5 Let n be an integer. If n2 is even, then is n is even.

Another method of proof for theorems with statements of the form P → Q is proof by contradiction. In
Lecture 0:Problem 7, we showed that ¬(P → Q) ⇐⇒ (P ∧ ¬Q). That is, if we prove that P ∧ ¬Q is false;
we can conclude that ¬(P → Q) is false, and hence ¬(¬(P → Q)) is true. It then follows, using the Double
Negation equivalence (Lecture 0:Problem 6 ), that P → Q must be true.

Example 6 The number
√

2 is irrational

Example 7 The only consecutive non-negative integers a,b and c that satisfy a2 + b2 = C2 are 3,4 and 5.

1.1.4 Case, and If and Only If

The other commonly used method to prove a statement P → Q is by breaking up the proof into a number of
cases. In Lecture 0: Problem 3, we showed that (A∨B)→ Q is equivalent to (A→ Q)∧ (B → Q). Hence in
order to prove that a statement of the form A∨B → Q is true, we prove that the both statements (A→ Q)
and (B → Q) are true.

Example 8 Let n be an integer. Then n2 + n is even.

Next common logical form of the statement of a theorem is P ↔ Q. We refer such theorems as ”if and only
if” theorems. To prove such statements we use the result from the Lecture 0, problem 4. Thus, to prove a
single statement of the form P ↔ Q, it will suffice to prove the two statements P → Q and Q→ P .

Example 9 Let m and n be integers. Then mn is odd if and only if both m and n are odd.

1.1.5 Mathematical Induction

Mathematical induction is a very useful method of proving certain types of statements that involve natural
numbers (N = {1, 2, 3, 4 . . . }). More precisely, mathematical induction is a method that can be used to prove
statements of the form (∀n ∈ N)(P (n)), where P (n) is some statements involving n. The way to construct
proof by induction is following:
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Theorem 1.2 Let P (n) is a statements involving n and ∀n ∈ N

1. Provide a proof that P (1) is true

2. Provide a proof of the statement, if P (n) is true than P (n + 1) is true

3. Then P (n) is true ∀n ∈ N

For the proof of the Theorem 1.2 look on Theorem 1, page 6 of ”Unit 1: math camp lecture notes” by
Dr.Rodrigo A.Velez ”

Example 10 Show that 8n − 3n is divisible by 5 ∀n ∈ N

Example 11 Let n ∈ N. Then

1 + 2 + 3 + · · ·+ n =
n(n + 1)

2

Example 12 Let n ∈ N. Then

12 + 22 + 32 + · · ·+ n2 =
n(n + 1)(2n + 1)

6

Example 13 Let n ∈ N. Then

13 + 23 + 33 + · · ·+ n3 = n2(2n2 − 1)
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