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e Recall our main gall is to estimate #(x) from y = f(x) + .

@ Last lecture we mostly focused on linear models, where f(x) is
linear function.

@ Linear models are relatively simple to describe and implement,
and the main advantage is it is easy to interpret and make
inference.

@ However, standard linear regression may have significant
limitation in terms of predictive power.

@ This happens, since the linearity assumption is almost always
an approximation.

@ By relaxing linearity assumption, one may achieve better
results.
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@ In this lecture, we describe tree-based methods for regression
problem. The classification problem will be covered later.

@ The main idea of this method involve stratifying or
segmenting the predictor space into a number of simple
regions. (Recall how you integrate any given function)

@ Then given an observation, the prediction is made by use of
the mean of the training observations in the region to which it
belongs.

@ To make tree-methods more competitive, hence we will
introduce random forest and boosting techniques, which
involve producing multiple trees to improve prediction
accuracy.
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Introduction

o Consider a regression problem with continuous response Y
and inputs X; and X;.
@ One possible partition of feature space. (Recall we call X; and

Xy as features.)

Xy

@ In each partition we can model Y with a different constant.

@ Even though the partitioning line has a simple description
X1 = ¢, some of the resulting regions are complicated to
describe.
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@ To simplify, we restrict attention to recursive binary
partitions.

Ry 2

Ry

X1

@ Basically, we split the space into two regions, and model the
response by the means of Y in each region.

@ To do this, we need to choose the variable and split — point
in orser to achieve the the best fit.

@ Then we continue in the same manner by splitting one or both
of these regions into two more regions.

@ The process is continued until some stopping rule is applied.

@ Thus we partition space into the five regions Ry, R», ..., Rs.
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@ The same model can be represented by the binary tree.

@ The full datasets sits at the top of the tree. Observations
satisfying the condition at each junction are assigned to the
left branch, and the others to the right branch.

@ The terminal nodes or leaves of the tree correspond to the
regions R1, Ra, ..., Rs

1
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@ The estimated regression surface will look like something like
in the figure below.

@ If you are interested what kind of function it is, then it is
given by

FX) = cml{(X1, X2) € Rm},
m=1

where ¢, is some constant, usually the mean value of region
Rm, and [(-) is identity function.




Introduction

Now we introduce the procedure of building a regression tree.
Then describe how to implement each step.

@ We devide the predictor space- that is, the set of possible
values for Xi, Xo,..., X, - into J distinct and non-overlapping
regions, R1, Rz, ..., Ry.

@ For every observation that falls into the region R, we make
the same prediction, which is simply the mean of the response
values for the training observations in R;

For example suppose that in Step 1 we obtain two regions, R; and
R», and that the response mean of the training observations in the
first region is 10, while the response mean of the training
observations in the second region is 20. Then for a given
observation X = x, if x € Ry we will predict a value of 10, and if
x € Ry we will predict a value of 20.
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@ We know give details on how to construct the regions
Ri,...,R;. That is how to grow a regression tree.

@ Our data consists of inputs and a continuous response, for
each of N observations :i.e x;,y; for i =1,2,..., N, with
Xi = (Xi1, -, Xip).

@ We need from algorithm automatically decide on the

e Splitting variables and split points
o Topology(shape) the tree should have.

@ Basically, we want from algorithm select the predictor X; and
the cutpoint s such that splitting the predictor space into the
regions {X|X; < s} and {X|X; > s} leads to the greatest
possible reduction in RSS.

4
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That is we consider all predictors Xi,..., X,, and all possible
values of the cutpoint s for each predictors, and then choose

the predictor and cutpoint such that the resulting tree has the
lowest RSS

That is for any j and s, we define the pair of half-plane
Ri(j,s) = {X|X; < s} and Rx(j,s) = {X|X; > s}
and we seek value of j and s that minimize the equation

RSS= > (i—-9r)+ >, i—Jr)

ix;€R1(j,s) ix;€R2(j,s)

where yr, is the mean response for the observations in
Ri(j,s), and yg, is the mean response in Ra(j,s) .

Next, the process is repeated to look for the best predictor
and best cutpoint in order to split the data further so as to
minimize the RSS within each of the resulting regions.

5
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target
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@ Once the regions Ry,..., R; have been created, we predict the
response for a given test observation using the mean of the
training observations in the region to which that test
observation belongs.

@ Now the question is: How large should we grow the tree?

@ Since the big tree might overfit the training data, while the
small tree might not capture the important structure.

@ The idea is to choose the optimal tree size adaptively from
the data, i.e consider the tree-size as a tuning prameter.
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o We start by growing a large tree Ty.

o We define a subtree T C Ty to be any tree that can be
obtained by pruning Ty, i.e by collapsing any number of its
internal nodes.

@ Then for each «, we find subtree T, C Ty to minimize

Tl

Z Z yRm +OZ|T‘7

m=1i:x;€Rpm

where | T| indicates the number of terminal nodes and yg_, is
the predicted response associated with Ry,.

@ The tuning parameter o controls trade-off between the
subtree’s complexity and its fit to the training data, i.e as «
increase we pay price for having a tree with many terminal
nodes. (Does this sound familiar?)
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Algorithm 8.1 Building a Regression Tree

1. Use recursive binary splitting to grow a large tree on the training
data, stopping only when each terminal node has fewer than some
minimum number of observations.

2. Apply cost complexity pruning to the large tree in order to obtain a
sequence of best subtrees, as a function of a.

3. Use K-fold cross-validation to choose a. That is, divide the training
observations into K folds. For each k =1,..., K:
(a) Repeat Steps 1 and 2 on all but the kth fold of the training data.

(b) Evaluate the mean squared prediction error on the data in the
left-out kth fold, as a function of a.

Average the results for each value of «, and pick o to minimize the

average error.

4. Return the subtree from Step 2 that corresponds to the chosen value
of .
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@ The idea of bagging is to run multiple Regression Trees and
then average the final result to improve the variance and
prediction.

@ That is we generate B different bootstrapped training data
sets and then construct B regression tree for each dataset.

@ Then average the resulting predictors.

21
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Random Forest

@ Random Forest provides an improvement over bagged trees by
so-called decorrelating the trees.

@ The idea is following, we build a number of decision trees on
bootstrapped training samples but when building this decision
trees each time a split in a tree is considered, a random
sample of m predictors is chosen to split candidates from the
full set of p predictors.

@ Typical choice of mis m=,/p

@ This procedure improves the prediction accuracy. For details
see Chapter 8 of ISLR.
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Variable Importance

@ RF and bagging typically results in improved accuracy over
prediction using a single tree.

@ Unfortunately, however, it can be difficult to interpret the
resulting model. Recall that one of the advantages of decision
trees is the attractive and easily interpreted diagram

@ However, when we bag a large number of trees, it is no longer
possible to represent the resulting statistical learning
procedure using a single tree, and it is no longer clear which
variables are most important to the procedure.

@ Thus, bagging improves prediction accuracy at the expense of
interpretability.
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@ Although the collection of bagged trees is much more difficult
to interpret than a single tree, one can obtain an overall
summary of the importance of each predictor using the RSS

@ We can measure importance by recording the total amount
that the RSS is decreasing due to splits over a given predictor,
averaged over all B trees.

@ A large value indicates an important predictor and vice verse.

o We will see example when we do actual data analysis

24
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Advantages of Trees

@ Trees are very easy to explain to people. In fact, they are even
easier to explain than linear regression!

@ Some people believe that decision trees more closely mirror
human decision-making than do the regression and
classification approaches seen in previous chapters.

@ Trees can be displayed graphically, and are easily interpreted
even by a non-expert (especially if they are small).

@ Trees can easily handle qualitative predictors without the need
to create dummy variables.

25
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Disadvantages

@ Unfortunately, trees generally do not have the same level of
predictive accuracy as some of the other regression and
classification approaches seen in this book.

o Additionally, trees can be very non-robust. In other words, a
small change in the data can cause a large change in the final
estimated tree.

@ Fortunately, by aggregating many decision trees, using
methods like bagging, and random forests, the predictive
performance of trees can be substantially improved.
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