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Introduction

In this lecture note we will focus on tools and techniques for
building valid regression analysis for real-world data, in
particular we will concentrate on Linear Regression :

We shall see that a key step in any regression analysis is
assessing the validity of the given model. When weaknesses in
the model are identified we need to address them as correct as
possible. An important thing to remember is that

It makes sense to base conclusions only on valid models
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Motivation

To motivate our study of statistical learning, we begin with
the simple example.

Suppose you are marketing consultant hired by client to
provide advice on how to improve sales of a particular product.

The data you have is following

Our main goal is to determine is there a relationship between
advertising and sales??
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Generally, suppose that we observe a quantitative response Y and
p different predictors, X1, . . . ,Xp. We assume that there some
relationship between Y and X = (X1, . . . ,Xp), which can be
written in the general form

Y = f (X ) + ε

, where usually f is unknown and in practice our job is to
approximate f as close as possible.

Question: Why we need to estimate f ?
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There are two main reasons that we may wish to estmate f .

Prediction: our job is to model Ŷ = f̂ (X ) such that we
predict f as accurate as possible. This is very importent topic,
but we are not going to cover it.

E (Y − Ŷ ) = [f (X )− f̂ (X )]2

reducible

+ Var(ε)
irreducible

Inference: we are often interested in understanding the way
that Y is affected as X1, . . . ,Xp change.
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Supervised vs Unsupervised

Most statistical problems fall into one of two
categories:Supervised and Unsupervised.

In supervised learning, for each observation of the predictor
measurement xi , i = 1, . . . , n there is an associated response
measurement yi . For example advertising and sales.

In contrast, supervised learning describes the somewhat more
challenging situation in which for every observation
i = 1, dots, n, we observe a vector of measurements xi , but no
associated response yi .
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Our interest is in answering the following questions:

1 How to choose f to minimize ”reducible” error?

2 Which predictors are associated with the response? That is
identify the few important predictors.

3 What is the relationship between the reposnse and each
predictor?

4 Can the relationship between Y and each predictor be
adequately summarized using a linear equation, or is the
relationship more complicated.
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Linear Models

In linear models we assume that the functional form, or shape of f
is linear. That is

f (x) = β0 + β1X1 + · · ·+ βpXp

Linear models used in marketing to explore relationship
between outcome of interest and other variables.

A common application in survey analysis is to model
satisfaction with a product in relation to specific elements of
the product and its delivery; this is called “satisfaction
drivers analysis.”

Linear models are also used to understand how price and
advertising are related to sales, and this is called “marketing
mix modeling.”
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Linear Models

In this class, we illustrate linear modeling with a satisfaction
drivers analysis using survey data for customers who have
visited an amusement park.

In the survey, respondents report their levels of satisfaction
with different aspects of their experience, and their overall
satisfaction.

Marketers frequently use this type of data to figure out what
aspects of the experience drive overall satisfaction, asking
questions such as,

Are people who are more satisfied with the rides also more
satisfied with their experience overall?” If the answer to this
question is “no,” then the company will know to invest in
improving other aspects of the experience.
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Least Squares

1 Regression analysis is a method for investigating the
functional relationship among variables.

2 Plots will be an important tool for both building regression
models and assessing their validity. We shall see that deciding
what to plot and how each plot should be interpreted will be a
major challenge.

3 Let start by reviewing simple linear models involving modeling
the relationship between two variables.
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Least Squares

In particular we consider problem involving modeling the
relationship between two variables as a straight line, that is,
when Y is modeled as a linear function of X .

Suppose we have data :

(x1, y1), (x2, y2), . . . , (xn, yn)

where x1 denotes the first value of the so-called X -variable
and y1 denotes the first value of the so-called Y -variable.

Question: What are the usual names for X and Y ?
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Least Squares

Simple linear regression is typically used to model the
relationship between two variables Y and X so that given a
specific value of X , that is, X = x , we can predict the value
of Y .

Mathematically, the regression of a random variable Y on a
random variable X is

E (Y |X = x)

, the expected value of Y when X takes the specific value x .
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Lease Square

For example, you work for the famous hotel and want to model
realtionship X = Number of Crews and Y = , Number of
Rooms Cleaned, then the regression of Y on X represents the
mean (or average) cleaned room on a given number of crew.

So the regression of Y on X is linear if

E (Y |X = x) = β0 + β1x

, where β0 and β1 are the intercept and the slope of a specific
straight line, respectively.
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Least Squares

Suppose that Y1,Y2, . . . ,Yn are independent and identical (explain
i.i.d?) realizations of the random variable Y (explain r.v ?) that
are observed at the values x1, x2, . . . , xn of a random variable X .
If the regression of Y on X is linear, then for i = 1, 2, . . . , n

Yi = E (Y |X = x) + ei = β0 + β1x + ei

Question: Explain what is ei here and why we need error. Also
what other assumption usually we make?

Aramayis Dallakyan 20 Lecture 1 18 / 36



Introduction
Linear Models

Overview of Least Squares Estimate
Estimating the population slope and intercept

Least Squares

The random error term captures all unexplained variation .

Thus, the random error term does not depend on x , nor does
it contain any information about Y . For now let assume

Var(Y |X = x) = σ2

Question: What is the name of the model where variance is
not constant and what would happen if we ignore the problem.
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OLS Estimation

Ideally we want correct values for β0 and β1. Unfortunately β0
and β1 are always unknown , since they represent the true
population and we never know the truth.

Thus, our task is use a sample of data instead of the whole
population. That is use the given data to estimate the slope
and the intercept.

This can be achieved by finding the equation of the line which
”best” fits our data, that is, choose b0 and b1 such that
ŷi = b0 + b1x is as ”close” as possible to yi .
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OLS Estimation

In practice, we wish to minimize the difference between the actual
value of y(yi ) and the predicted value of y(ŷi ). This difference is
called the residual, êi , that is,

êi = yi − ŷi

.
A very popular method of choosing b0 and b1 is called the method
of least squares. (Explain LS?)
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OLS Estimation

As the name suggests b0 and b1 are chosen to minimize the sum of
squared residuals RSS.

RSS =
n∑

i=1

ê2i =
n∑

i=1

(yi − ŷi )
2 =

n∑
i=1

(yi − b0 − b1xi )
2

For RSS to be a minimum with respect to b0 and b1 we require
(what is the name of this requirement?)

∂RSS

∂b0
= −2

n∑
i=1

(yi − b0 − b1xi ) = 0

and

∂RSS

∂b1
= −2

n∑
i=1

xi (yi − b0 − b1xi ) = 0
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OLS Estimation

These last two equations are called the normal equations .
Solving these equations for b0 and b1 gives the so-called least
squares estimates of the intercept (VFY)

β̂0 = ȳ − β̂1x̄

and the slope

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

Also, we can use the residuals êi to estimate the true σ2. In fact it
can be shown that

S2 =
RSS

n − 2
=

1

n − 2

∑
êi

2

Question: What we can say about
∑

êi and why we have 2 in
denominator?
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OLS Estimation

When we have more than one explanatory variable we deal with
multiple linear regression.

E (Y |X1 = x1, . . . ,Xp = xp) = β0 + β1x1 + · · ·+ βpxp

Thus,
Yi = β0 + β1x1 + · · ·+ βpxp

In matrix notation the problem becomes

RSS(β) = (Y − Xβ)T (Y − Xβ)

after OLS one can show that

β̂ = (XTX)−1XTY

It is easy to show that
E (β̂|X) = β

Var(β̂|X) = σ2(XTX)
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Numerical Results

Assuming that errors are normally distributed ei ∼ N(0, σ2), it can
be shown that for i = 0, 1 . . . , p

Ti =
β̂i − βi
se(β̂)

∼ tn−p−1

Thus we can do hypothesis testing such as

H0 : β1 = 0

H1 : β1 6= 0
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Numerical Results

When we reject null hypothesis? How we test whether there is a
linear association between Y and X1, . . . ,Xp ? If

Y = β0 + β1x1 + · · ·+ βpxp + e

H0 : β1 = β2 = · · · = βp = 0

HA : at least some of the βi 6= 0

If SSreg =
∑

(ŷi − ȳ)2 than we can test the hypothesis by

F =
SSreg/p

RSS/(n − p − 1)

Aramayis Dallakyan 31 Lecture 1 29 / 36



Introduction
Linear Models

Overview of Least Squares Estimate
Estimating the population slope and intercept

One last cool thing you may want to do is to check the linearity
assumption of the whole function f (x).
Suppose the true regression model between Y and X is given by

Y = g(β0 + β1x + ε)

, where g is unknown. The the inverse of g is

g−1(Y ) = β0 + β1x + ε

. Thus if we knew β0 and β1 we can discover the shape of g−1 by
plotting Y on the horizontal axis and β0 + β1x on the vertical axis.
In practice since β’s are unknown, given that some theoretical
assumptions are satisfied, g−1 can be estimated using fitted values
ŷ = β̂0 + β̂1x Such plot is called inverse response plot
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Dependent variable:

Rooms Rooms trsf

(1) (2)

Crews 3.701∗∗∗ 1.027∗∗∗

(0.212) (0.057)

Constant 1.785 3.278∗∗∗

(2.096) (0.561)

Observations 53 53
R2 0.857 0.865
Adjusted R2 0.854 0.863
Residual Std. Error (df = 51) 7.336 1.964
F Statistic (df = 1; 51) 305.275∗∗∗ 327.928∗∗∗
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Now we can compare two models based on three more metrics
such as adjusted-R2,AIC and BIC.The rule of thumb for AIC and
BIC criteria are smaller the value better the model.

Table

m1 m2

R sq 0.854 0.863
AIC 213.690 73.978
BIC 217.141 77.429
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Numerical Results

Next we are going to analyze satisfaction drivers using survey data
for customers who have visited an amusement park. The main
points we are going to spent time on are:

1 Determine whether the proposed regression model is a valid
model .( plots of standardized residuals) .

2 Determine which (if any) of the data points have x -values
that have an unusually large effect on the estimated regression
model

3 Determine which (if any) of the data points are outliers , that
is, points which do not follow the pattern.

4 Examine whether the assumption of constant variance of the
errors is reasonable.

5 For small sample examine whether the assumption that the
errors are normally distributed is reasonable.
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Numerical Results

Amusemant park has 8 observed predictors. That is we have
28 = 256 possible models.

1 M0 : y = β0 + β1x1 + ε

2 M2 : y = β0 + β1x1 + β2x2ε

3
...

...
...

...
...

4 M7 : y = β0 + β1x1 + β2x2 + · · ·+ β8x8 + ε

5 M8 : y = β0 + β1x1 + β2x2 + · · ·+ β8x8 + β9x1x2 + ε

6
...

...
...

...
...
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